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Abstract
We study, by simulation, the effect of attractive triplet interactions on the phase
behaviour of suspensions of charged colloidal particles at low ionic strength,
i.e. in the regime where the pair interactions are purely repulsive. We use
the pair and triplet interactions that were obtained recently from a numerical,
nonlinear Poisson–Boltzman study (Russ et al 2002 Phys. Rev. E 66 011402).
Our simulations tentatively explain, for the first time, experimental observations
of a rather large density difference between coexisting body centred cubic and
face centred cubic crystal phases.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Charge-stabilized colloidal suspensions are extremely asymmetric fluid mixtures that consist
of highly charged colloidal particles immersed in a molecular solvent with cations and anions.
Such suspensions are abundant in industry (e.g. ink, paint) and biology (e.g. in cells) but, from
a condensed matter point of view, their interest stems mainly from the fact that these multi-
component fluids can be regarded as one-component fluids of colloids interacting through
tunable effective potentials. The standard and very successful effective one-component
description of suspensions of charged colloids is due to Derjaguin, Landau, Verwey and
Overbeek (DLVO) [1]. The DLVO theory predicts that the effective potential between two
charged colloids at separation r consists of a sum of:

(i) a hard-core repulsion due to the finite diameter σ of the colloids;
(ii) van der Waals attractions with a typical range of a few nanometres beyond the colloidal

surface; and
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(iii) a screened-Coulomb (Yukawa) repulsion ∝ exp[−κr ]/r , where κ = (8πe2cs/εkT )1/2

is the inverse Debye screening length given in terms of the elementary charge e, the
concentration 2cs of monovalent anions and cations, the dielectric constant ε of the solvent,
and the thermal energy kT .

The electrostatic screening is performed by the salt ions, which form an oppositely charged
diffuse cloud of thickness κ−1 around the charged colloidal surfaces. For water at room
temperature, with the physically accessible range of salt concentrations 10−7 M � cs � 10 M,
it follows that κ−1 varies over four decades from 1 Å to 1 µm upon decreasing cs from its
highest to its lowest possible value. At the highest salt concentrations, κ−1 is smaller than
the range of the dispersion forces, which explains the flocculation instability of suspensions
due to the irreversible aggregation of colloids [2]. At intermediate salt concentrations, say
cs � 10−3–10−1 M, the range of the electrostatic repulsions and the dispersion forces are
similar, and their competition and interplay explain, for instance, the reversible vapour–liquid
transition [3] observed in this regime. At typical low salt concentrations, cs � 10−3 M, the
van der Waals attractions are usually masked by the screened-Coulomb repulsions, since κ−1

is then (much) larger than the range of the attractions. The repulsive long-range nature of the
interactions in this regime can explain observations of stable face centred cubic (fcc) and body
centred cubic (bcc) crystal phases at packing fractions as low as a few per cent [2]. For these
reasons, and many more, the DLVO potential is a true cornerstone of colloid science.

It is important to recall, however, that explaining the behaviour of suspensions in terms
of the DLVO potential involves the tacit assumption of pairwise additivity of the effective
interactions, i.e. implicitly one assumes that the interaction Hamiltonian of N colloids,
with coordinates ri (i = 1, . . . , N), takes the pairwise form H2 = ∑N

i< j v2(ri j ), where
ri j = |ri − r j |. Heuristically, one argues that pairwise additivity of the effective interactions
can only be a reasonable approximation if the range of the effective pair-potential v2(r) is
small compared to the diameter σ of the colloidal spheres, i.e. if κσ � 1. By contrast, one
expects important triplet and higher-order ‘overlaps’ of the ionic clouds, and hence many-
body potentials, if κσ � 1. For typical colloidal diameters this condition is realized in the
extremely low-salt regime of 10−5 M � cs � 10−7 M, where κ−1 � 100–1000 nm for water
at room temperature. Recent measurements of radial distribution functions point indeed to the
breakdown of pairwise additivity in this low-salt regime [4]. More surprisingly, perhaps, direct
experimental evidence of the qualitative breakdown of pairwise additivity in this regime has
in fact long been available in the literature [5–8], but has not received any detailed attention.
This could be due to the fact that these studies ‘merely’ yield fluid, fcc and bcc phases, as
predicted on the basis of the DLVO potential [9]. The evidence of the breakdown stems from
the large magnitude of the difference in densities between the coexisting phases in fluid–solid
and bcc–fcc equilibrium. If one characterizes this difference by the ratio x (>1) of the two
coexisting densities, one finds x � 3 [5] and x = 1.5 [6] for fluid–solid coexistence and
x � 1.26 [7] and x = 1.78 [8] for bcc–fcc coexistence. To appreciate the large magnitude of
these density jumps, one recalls that x = 1.1 for the fluid–fcc density jump in the hard-sphere
system, that any repulsive softness tends to decrease x towards unity (a smaller jump) [10],
that the density jump across the fcc–bcc transition in soft-sphere systems is so small that one
usually does not bother to determine it, and that ‘volume’ terms (which can be seen as coarse-
grained many-body potentials) tend to decrease density jumps in low-salt suspensions [11].
In this article we explain the observed large density differences between the coexisting phases
in low-salt colloidal suspensions, for the first time, as a direct consequence of non-pairwise
interactions.
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2. Model and methods

The simplest possible non-pairwise correction to the effective Hamiltonian H2 involves the
triplet potential v3, and the resulting interaction Hamiltonian is of the form

H23 =
N∑

i< j

v2(ri j ) +
N∑

i< j<k

v3(ri j , rik, r jk). (1)

Recently, v2 and v3 were calculated numerically within nonlinear Poisson–Boltzman theory
for a model system of uniformly charged spheres (of total charge Ze, with Z � 1) immersed
in a structureless solvent (with dielectric constant ε, inverse temperature β = 1/kT , Bjerrum
length λB = βe2/ε, and Debye screening length κ−1) [12]. It was found that v2 (repulsive)
and v3 (attractive) can be represented accurately by

βv2(r) = A2
σ

λB

exp[−κr ]

r/σ
, r > σ, (2)

βv3(ri j , rik, r jk) = −A3
σ

λB

exp[−γ (ri j + rik + r jk)]

(ri j + rik + r jk)/σ
, (3)

where A2, A3 and γ are positive fit parameters which only depend on κσ and ZλB/σ ≡ Z̄ ,
and which are tabulated extensively in [12]. These simple expressions for v2 and v3, which
are consistent with the direct simulations of pair and triplet forces in systems of two and three
colloids [13], enable us to perform efficient Monte Carlo simulations of N-body systems to
study the effect of the attractive three-body potentials on the phase diagram of charge-stabilized
suspensions. For Hamiltonians H23 described by equation (1), we calculate the Helmholtz free
energy of typically N = 250 colloids in a volume V for a range of densities ρ = N/V by
means of thermodynamic integration. We use the hard-sphere fluid and Einstein crystals as
reference states for the fluid and the crystalline fcc and bcc phases, respectively, and perform
common tangent constructions to determine phase coexistence [14]. Note that the counter-ion
contribution to the Helmholtz free energy (or rather the grand potential) is correctly taken
into account because the effective potentials v2 and v3 are based on an integration over the
counter-ion’s degrees of freedom [12].

3. Results and conclusions

We set λB/σ = 0.0225 and focus on calculating the phase behaviour for reduced charge
Z̄ = 1.8. For water at room temperature this corresponds to a colloidal charge of Z = 80
and a diameter of σ = 32 nm. As a benchmark we first calculate the phase diagram of the
purely pairwise system, i.e. with v3 ≡ 0. Figure 1 shows the resulting phase diagram in
the η–κσ representation, where η = (π/6)ρσ 3 is the colloidal packing fraction. Note that
κ does not depend on η. In fact, κ is the screening parameter of a salt reservoir in osmotic
contact with the colloidal suspension. The two-phase regions are grey, and tie lines between
the coexisting phases are horizontal. The prefactors A2 for κσ > 2.56 were obtained by linear
extrapolation with respect to κσ , as no numerical data were tabulated in this κσ -regime [12].
The phase diagram shows a large bcc pocket below a fluid–bcc–fcc triple point at κσ � 4.86,
and narrowing fluid–fcc, fluid–bcc and fcc–bcc coexistence regimes upon decreasing κσ (the
density ratio x � 1.03 at all the binodals in the regime shown in figure 1). We find that the
low-κσ part of the fluid–bcc coexistence line (i.e. that part where the hard-core is not expected
to be important) is in good agreement with that of point-Yukawa particles presented in [15].
At high κσ , beyond the scale of figure 1, the fluid–fcc coexistence line approaches that of hard
spheres.
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Figure 1. Phase diagram of a pairwise aqueous suspension of charged colloids (charge Z = 80,
diameter σ = 32 nm, packing fraction η) in osmotic contact with a reservoir of monovalent salt
ions (Debye length κ−1), as obtained from simulation. We distinguish fluid, bcc, and fcc phases
that are separated by (grey) two-phase regions merging in a triple point at κσ � 4.8. The two-phase
regions represent relatively small density jumps, i.e. x � 1.03 (see text).
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Figure 2. As figure 1, but now the Hamiltonian includes the triplet attractions, see equation (1).
Note the different κσ -scale. The grey areas represent two-phase coexistence, the horizontal dashed
line is the lower fluid–bcc–fcc triple point, and the two almost vertical dashed lines represent the
fluid–bcc and bcc–fcc phase boundaries of the pairwise system of figure 1.

In figure 2 we present the phase diagram for the same parameters as in figure 1, but now
including the triplet potential. Note the different κσ -scale of figure 2; linear interpolation
of the data of [12] was used to obtain the potentials in the required regime of κσ . Figure 2
shows that an important effect of the inclusion of the triplet potential is the reduction of the
stability range of the bcc phase, which is now not only confined by an upper triple point (at



Effect of triplet attractions on the phase diagram of suspensions of charged colloids S3553

κσ � 4.86, as in the pairwise system) but also by a lower one at κσ � 2.36. Below the latter
the system with triplet attractions exhibits a broad fluid–fcc coexistence (with x � 2), whereas
in the regime 2.36 � κσ � 2.56 a very narrow fluid–bcc coexistence occurs at η ≈ 0.35
and a rather broad bcc–fcc coexistence occurs at higher η. The density ratio of the latter
shrinks from x � 2 at κσ = 2.36 to essentially unity (a negligible jump) at κσ ≈ 2.43. The
essentially vertical dashed lines in figure 2 give the fluid–bcc and bcc–fcc phase boundaries
of the pairwise system of figure 1. By comparing the Madelung energies of the pairwise and
the pair-and-triplet system we estimate that the phase diagrams of figures 1 and 2 essentially
coincide for κσ � 4, i.e. in the high-salt regime the effect of triplet forces is vanishingly small,
as expected. We argue that there must be a regime in the (η, κσ) plane where the dominant
correction to pairwise additivity is the triplet potential, but that higher-order terms will become
important at sufficiently low κσ and high η. One expects that the onset of the broadening of
bcc–fcc coexistence (at κσ � 2.43) is essentially an effect induced by the triplet attractions,
but higher-order potentials will doubtlessly affect the dense fcc phase at η � 0.7 at lower κσ .
In this sense our key result is the widening of the bcc–fcc coexistence at κσ � 2.4, rather than
that of the fluid–fcc coexistence below the lower triple point. In fact, one could argue that the
extremely dense coexisting fcc phase for κσ � 2.36 at η � 0.7 is an unrealistic artifact of
the truncation of the effective Hamiltonian beyond the triplet terms, which would be restored
to, say, η � 0.5 if sufficient higher-body terms were taken into account. Given the fact that
the four-body potential is also of an attractive nature [12], at least for those few configurations
for which it was calculated, one expects even broader two-phase regions if the truncation is
performed after the four-body term. In other words, one would have to include terms up to
v5 (or even higher, if v5 also turns out to be attractive) in order to shift the coexisting fcc
density to η � 0.5. This is a rather unattractive perspective, and indicates perhaps that the
systematic expansion of the effective Hamiltonian into density-independent n-body potentials
is not efficient enough to produce quantitative predictions in the regime of low κσ .

We now wish to compare the phase diagram of figure 2 with the available experimental
phase diagrams of [5, 7, 8]. At first sight such a direct comparison seems impossible,
since the present calculations are based on the dimensionless combinations Z̄ = 1.8 and
λB/σ = 0.0225, which do not coincide with those of the experiments, where Z̄ ′ = 2.16
and λ′

B/σ ′ = 0.016 in the low-salt regime of [7] and Z̄ ′ � 4–5 and λ′
B/σ ′ � 0.005–0.006

in [5, 8]. Here (and below) the primes denote experimental values, where the experimental
charge number Z ′ is based on the assumption that the pair interaction is of the DLVO form
βvDLVO(r) = (Z ′/(1 + κ ′σ ′/2))2λ′

B exp[κ ′(σ ′ − r)]/r . Yet even though the simulated system
differs from the experimental ones, it is possible to construct a mapping (η, κσ) → (η′, κ ′σ ′)
that, arguably, relates the simulated system to an experimental one, albeit approximately.
The mapping is based on the equality of the pair-potential v2 of equation (2) used in the
simulations and the experimental DLVO potential vDLVO, at equal scaled separation s = r/a
and r/a′, respectively, where a = ρ−1/3 is the typical interparticle spacing in the simulations
and a′ is that in the experiment. This condition can be written as v2(as) = vDLVO(a′s) for all s
sufficiently large, and the equality of the exponential decay yields κa = κ ′a′ or, equivalently,

η′ = (κ ′σ ′)3

(κσ )3
η. (4)

The required κ ′σ ′ follows from the condition of equal prefactors:
exp(κ ′σ ′)κ ′σ ′

(1 + κ ′σ ′/2)2
= A2

(Z ′)2

σ

λB

σ ′

λ′
B

κσ, (5)

which uniquely maps κσ to κ ′σ ′ for fixed Z ′, λ′
B/σ ′ and λB/σ (recall that A2 = A2(κσ, Z̄)).

The equations (4) and (5) constitute the mapping that we propose here.
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Figure 3. A mapping of figure 2 (see text) on the experimental conditions of [7]. The inset shows
the experimental phase diagram of [7]. The symbols are as in figures 1 and 2.

We note that a better comparison with the experimental phase diagram would be based
on repeating the calculation with the value of Z̄ used in the experiments, instead of using the
mapping given by equations (4) and (5). However, given that the calculation of the phase
diagram in figure 2 requires about one year of CPU time, we cannot simply re-calculate it for
a larger parameter set at this stage.

Before comparing the results of the mapping represented by the equations (4) and (5), we
wish to stress that mapping state points on the basis of the equality of scaled pair-potentials
is bound to suffer from several short-comings. For instance, in this mapping we ignored the
hard-core contribution of the two pair-potentials—equating these in the scaled systems would
yield σ/a = σ ′/a′, i.e. η = η′. The mapping can therefore only be quantitative for state-points
where the soft repulsions are strong enough to prevent contact. Another shortcoming is caused
by the fact that the mapping ignores the triplet potential. However, this is harmless if the
triplet potentials of two systems (primed and unprimed) satisfy the same scaling as the pair
interactions, i.e. v3({asi j}) = v′

3({a′si j }) where si j are the scaled particle separations. For
interactions of the form of equations (2) and (3), the simultaneous scaling of pair and triplet
potentials can be satisfied provided that γ /κ and A2/A3 are constants that are independent of
κσ and Z̄ . Although one checks from the tabulated values of [12] that this condition is not
met exactly, one observes that the aforementioned ratios vary by, say, a factor 2–3, whereas A2

etc individually vary over one to two decades for Z̄ � 1.8. In other words, the pair and triplet
interactions scale in an approximately similar fashion, which lends the mapping at least some
qualitative credibility. A very bona fide aspect of the mapping is that κ ′σ ′ depends only on
κσ and not on η (see equation (5)) and, as a consequence, any tie-line at a fixed κσ is mapped
onto another one at some fixed κ ′σ ′.

In figure 3 we present the result of the mapping of the phase diagram of figure 2 using
equations (4) and (5) and the experimental parameters Z ′ and λ′

B/σ ′ given by Sirota et al [7];
the inset shows the corresponding experimental phase diagram [7]. Taking into account that
no free parameters are used, it is fair to say that there is some notable agreement, structurally as
well as numerically. For instance, both phase diagrams of figure 3 have packing fractions and
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Debye screening lengths in the same regime (Sirota et al give κ ′σ ′ = 2.3 at η′ = 0.10 for their
low-salt regime). Regarding the structure,we note that at κ ′σ ′ ≈ 1.5 (i.e. low salt concentration
in Sirota et al) both phase diagrams exhibit, upon increasing density, a sequence of fluid–bcc–
fcc (or glass), with a small density jump at the fluid–bcc transition and a considerable jump
at the bcc–fcc (or glass) transition. While the order of occurrence of the bcc and fcc phases
would also be predicted correctly by a calculation based on only two-body interactions, such
calculations would certainly not predict the large density difference between coexisting bcc
and fcc crystals. At higher salt concentrations (above 200 µM), the phase diagram of Sirota
et al has a fluid–bcc–fcc triplet point beyond which no bcc pocket is seen. Though not shown
in figure 3, our phase diagram also has this triple point, and it is estimated to be around
κ ′σ ′ � 3.37. When comparing the values of κσ in our calculations with those of Sirota et al,
it is important to recall that our κσ is that of the salt reservoir while, in the experiments, κσ

also includes the screening due to the counter-ions. This makes a direct comparison with
experimental data particularly difficult.

There are also apparent discrepancies in the two phase diagrams in figure 3. The first is
that, in the low-salt regime, our phase diagram does not predict a stable bcc phase, while it
is clearly present in the experiments. However, we argue that, in the very-low-salt regime,
the applicability of the many-body potential that is truncated after the triplet term loses its
validity, i.e. four- and higher-body terms become important. Second, the agreement is by
no means quantitative: the coexisting packing fractions of the two phase diagrams are in
the same regime but not identical, and our calculations predict broader coexistence than is
seen in the experiments. As already mentioned earlier, we expect that the coexistence would
become narrower if many more n-body terms were considered, but this is rather impractical.
The purpose of our calculations was to study the effect of the three-body interactions as a
first-order correction to the pairwise picture. It is unrealistic to expect that such a first-order
correction yields quantitatively accurate results down to very-low-salt concentrations.

In the same fashion, we also attempted to map the phase diagram of figure 2 on those
of [5, 8]. For both cases we could only obtain quantitative agreement if we reduced the
reported colloidal charges considerably. For instance, if we set Z ′ = 480 instead of the reported
Z ′ = 700 [8], we find that the bcc–fcc coexistence region extends from η′ = 0.0026 ± 0.0004
to η′ = 0.0045 ± 0.0001 at κ ′σ ′ ≈ 0.45. This matches the ‘salt-free’ observations of [8]
quantitatively. Similarly, if we set Z ′ = 350 instead of Z ′ = 880 as reported in [5], the
fluid–fcc coexistence is in the regime from η′ = 0.010 ± 0.005 to η′ = 0.030 ± 0.004 at
κ ′σ ′ ≈ 0.8, as observed experimentally in this low-salt regime [5]. Interestingly, it seems
that another theoretical attempt to reproduce the experimental low-salt freezing line of [5] also
needs colloidal charges much lower than the reported ones [16].

We conclude that triplet attractions can explain, at least qualitatively, some of the large
density differences that are observed experimentally between coexisting phases in low-salt
suspensions of highly charged colloidal spheres.

Acknowledgments

It is a pleasure to thank C Russ and H von Grünberg for stimulating discussions. This work
is part of the Research program of the ‘Stichting voor Fundamenteel Onderzoek der Materie
(FOM)’, which is supported financially by the ‘Nederlandse Organisatie voor Wetenschappelijk
Onderzoek (NWO)’. We also thank the Dutch National Computer Facilities foundation for
access to the SGI Origin3800. The High Performance Computing group of Utrecht University
is gratefully acknowledged for ample computer time. A-P H also gratefully acknowledges
financial support from the Finnish Cultural Foundation.



S3556 A-P Hynninen et al

References

[1] Derjaguin B and Landau L 1941 Acta Physicochim. USSR 14 633
Verwey E J W and Overbeek J Th G 1948 Theory of the Stability of Lyotropic Colloids (Amsterdam: Elsevier)

[2] Russel W B, Saville D A and Schowalter W R 1989 Colloidal Dispersions (Cambridge: Cambridge University
Press)

[3] Victor J M and Hansen J-P 1985 Trans. Faraday Soc. 81 43
[4] Brunner M, Bechinger C, Strepp C W, Lobaskin V and von Grünberg H H 2002 Europhys. Lett. 58 926

Klein R, von Grünberg H H, Bechinger C, Brunner M and Lobaskin V 2002 J. Phys.: Condens. Matter 14 7631
[5] Monovoukas Y and Gast A P 1989 J. Colloids Interface Sci. 128 533
[6] Philipse A P and Koenderink G H 2003 Adv. Colloid Interface Sci. 100–102 613
[7] Sirota E B, Ou-Yang H D, Sinha S K, Chaikin P M, Axe J D and Fujii Y 1989 Phys. Rev. Lett. 62 1524
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